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LETT’ER TO THE EDITOR 

Search for multifractality in damage spreading for Kauffman 
cellular automata 

A Coniglio?, D StaufferS and N Jan 
Physics Department, St Francis Xavier University, Antigonish, Nova Scotia, B2G l C 0 ,  
Canada 

Received 19 August 1987 

Abstract. We check how an initial disturbance, called the damage, spreads through a 
square lattice of Kauffman cellular automata at their critical point. We determine the 
moments of the probability that a site has been damaged n times, and check for multifrac- 
tality in the fractal dimensions, or critical exponents, of these moments of the damage 
probability. 

The distribution of voltage drops in random resistor networks [ 13, or the distribution 
of growth probabilities in cluster growth processes [2], are two examples of multifractals 
([3] and references therein). The kth moments of these voltages or probabilities have 
critical exponents or fractal dimensions which form an infinite set without any simple 
relation between these exponents. The present letter looks for analogous effects in the 
cluster growth probabilities of cellular automata. We selected the Kauff man model 
[4] for this study since the usual fractal dimensions [SI have already been studied for 
this model. The present letter deals with moments of the ‘damage’ spreading prob- 
abilities and parallels work [6] on moments of local periods in Kauffman models. 

In  the Kauffman model, as in all deterministic cellular automata, each ‘spin’ on a 
lattice is determined at time t + 1 by the spin values of its neighbour sites at time t. 
The rule by which the neighbours govern the flipping of the central spin -are selected 
randomly for each site from the total set of all possible functions. With probability p 
one selects, for each site separately, a rule giving the result ‘up’ for that neighbour 
configuration, and with probability 1 - p  one selects a ‘down’ rule. We restrict ourselves 
here to a nearest-neighbour spin-; model on a square lattice. For further reviews of 
Kauffman models see [4,5]. 

‘Damage spreading’ is a dynamic generalisation of the ‘overlap’ or Hamming 
distance concept [4,5]. One looks at two identical lattices, with the same rules and 
initially the same spin configuration. After some stationary state has been established, 
one flips the centre spin. Then one continues to simulate the two lattices and observes, 
at every time step, which sites in the lattice have spins which differ in the two lattices. 
These sites are called ‘damaged’. One calculates how often a site is damaged during 
the time development and how long it takes for the damage to reach the boundaries 
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of the system. Analogous calculations have been made for other systems, such as Ising 
models [7]. 

We calculate here the probability p ,  = n , / Z , n ,  of a site to be damaged, where n, is 
the total number of times this particular site i was damaged during the simulation. 
We average only over those samples where the damage touched the upper boundary 
of our square lattice, and found the minimum of all these times needed to reach the 
boundary. We ignore in our averages all times beyond this minimum time in order to 
reduce finite-size effects. We calculate, as a function of time, the moments M9 = Z,pp 
for various (not necessarily integral) q ;  of course, M9 = 1 for q = 1. For times much 
larger than unity we expect 

M~ a t d ( 9 ) .  ( 1 )  
For p far above the critical point p E  damage spreads easily over most of the system 

with a constant propagation velocity. Most lattice sites thus will have n , E  t for 
sufficiently long times. 

Since the number of damaged sites MO scales as Moa t d i  with d, depending on the 
Euclidean dimension d [4,5], y e  have Z, n, a t d l + ' .  Thus the moments are expected 
to scale as Mq = Z, ( r ~ , / Z n , ) ~  a t d l ( ' - q '  and 

d 4 4 )  = & ( 1 - 4 )  ( 2 )  - 
with d, = 2 for d = 2 .  

Figure l ( a )  shows selected moments M q ( t )  for p = 0.5 in lattices up to 1OOx 100, 
averaged over 100 configurations. The asymptotic regime seems to be reached only 
after t =  16. This was checked by analysing systems with size up to 400. The slopes 
in this log-log plot for time t larger than 16, i.e. the effective exponents 4(q), are also 
indicated. In figure 2(a) we plot 4(q)  against q. The data follow a straight line with 
slope 2, - 2.1 k0.2 as expected from equation (2). 

More interesting is the critical behaviour at p = p c  where the damaged cluster just 
starts to spread over the whole lattice. The moments averaged over 1300 configurations 
with the relative slopes are shown in figure l (b)  while 4(q) against q is plotted in 
figure 2( b ) .  
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Figure 1. Log-log plot of moments M, against time r, indicating the exponents 9 ( 9 )  
derived from their slopes. ( a )  p = 0.5, ( b )  p = p E  = 0.29. 
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If simple scaling would be valid the exponents 4(q) would be linear in q with 
possibly two straight lines, one dominated by the large values of p and the other by 
small values of p .  Any departure from such behaviour is symptomatic of multifractality, 
namely the set of 4( q )  is an infinite set of independent exponents, without any obvious 
relation between them [ 1-31. 

The presence of this set of exponents implies that the fractal set of all the damage 
sites can be decomposed into infinitely many fractal subsets each made of sites 
characterised by the same probability p .  

Our numerical data in figure 2(b)  do not agree well with simple two-exponent 
scaling and seem to be consistent with the multifractality concept. The sample size 
employed here could be regarded as sufficient in a search for multifractality in random 
resistor networks [ 13 but might be relatively small for Kauffman models, where the 
total amount of damage up to the touching event is known [SI to follow no asymptotic 
power law for systems with less than 50x 50 spins. In particular it was found [5] that 
the mass of the total damaged sites scale with an exponent 2, = 0.88 for system sizes 
up to 200x200. This exponent should agree with the value 4(0). Here we find 
4(0) - 1 . 1  suggesting that we are not yet in the asymptotic regime. However, simulations 
for much bigger lattices would be very costly since already the present study took 
several hundred hours on a SUN 3/50 workstation. 

Thus, for the lattice sizes employed here up to 100 x 100, multifractality seems to 
hold for the damage probabilities in the Kauffman model on the critical point of the 
square lattice. However one cannot completely exclude the possiblity that for larger 
systems a simple two-exponent scaling applies. 

AC and DS would like to acknowledge the James Chair of Studies in the Pure and 
Applied Sciences. 
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